Text Searchable File

Syntle Fite Copy 128650

MRID No. 413961-12

DATA EVALUATION RECORD

1. CHEMICAL: Glufosinate.

Shaughnessy No. 128850.

- 2. TEST MATERIAL: Hoe 039866: Ammonium-DL-homoalanin-4yl(methyl)phosphinate; Trade name: Ignite Technical (CAS No. 77182-82-2); 96.2% active ingredient; a solid, white powder.
- 3. <u>STUDY TYPE</u>: Vegetative Vigor Nontarget Phytotoxicity Test | 28-/6 Tier 2. Species Tested: Soybean, Lettuce, Carrot, Tomato, Cucumber, Cabbage, Oat, Perennial Ryegrass, Corn, and Onion.
 - 4. <u>CITATION</u>: Chetram, R.S. 1989. Hoe 039866: Tier II

 Vegetative Vigor Nontarget Phytotoxicity Study: Maximum

 Application Rate of 0.4 lbs a.i./Acre. Laboratory Project

 ID No. LR89-15A. Conducted by Pan-Agricultural

 Laboratories, Inc., Madera, CA. Submitted by Hoechst

 Celanese Corporation, Somerville, NJ. MRID No. 413961-12.

5. REVIEWED By:

Judy Awong, Ph.D. Staff Scientist KBN Engineering and Applied Sciences, Inc.

6. APPROVED BY:

Pim Kosalwat, Ph.D. Staff Toxicologist KBN Engineering and Applied Sciences, Inc.

Henry T. Craven, M.S. Supervisor, EEB/HED USEPA

Signature:

Date: 6

Signature: P. Kosalwat

Date: 6/19/90

Signature:

Date:

12/20/90

18 Nrs

2035482

M

1

7. <u>CONCLUSIONS</u>: The study was conducted in a scientifically sound manner. Some inconsistencies were observed between the reviewer's and the author's statistical analyses. These differences, however, did not adversely affect the results or conclusions of the study.

Based on the author's and the reviewer's statistical analyses, the NOEC values for lettuce, ryegrass and cucumber were <0.05 lb ai/A HOE 039866. The NOEC value for tomato was 0.1 lb ai/A while the values for soybean, carrot, and onion were 0.2 lb ai/A. The NOEC values for cabbage, oat, and corn were 0.4 lb/A, the highest concentration tested. The EC50 value for lettuce (0.24) is <0.75 lb ai/A. The EC25 values for soybean, lettuce, tomato, cucumber, cabbage, and ryegrass were also <0.75 lb ai/A. The EC25 and EC50 values for carrot, oat and onion were >0.75 lb ai/A. The study results indicate that a Tier III study is required.

- 8. <u>RECOMMENDATIONS</u>: Based on the study results, a Tier III study is recommended for at least those plant species exhibiting phytotoxicity effects (i.e., soybean, lettuce, carrot, tomato, cucumber, ryegrass, and onion).
- 9. BACKGROUND:

* *

- 10. DISCUSSION OF INDIVIDUAL TESTS: N/A.
- 11. MATERIALS AND METHODS:
 - A. <u>Test Plants</u>: Dicotyledon plants are represented by soybean, lettuce, carrot, tomato, cucumber, and cabbage. Monocotyledon plants are represented by corn, oats, ryegrass, and onion. Cultivars, lot number, source, and germination ratings were provided in the report.
 - B. Test System: Seeds of each crop were planted in plastic pots (Com-Pack M1725, Black, 7.5 x 7.5 x 6.0 cm) filled with Supersoil, a pasteurized potting soil comprised of fir bark, redwood, Canadian peat, and sand. An analysis of the soil was provided in the report. A plexiglass template was used to create planting holes in the soil, thus allowing for uniform planting depth and seed distribution.

Soybean and corn were planted at a depth of 2.5 cm, while the remaining eight species were planted at a depth of 1.3 cm. After planting, the pots were placed outdoors on a bench and covered with bird netting.

Seedlings were allowed to grow to the appropriate stage of growth (1-3 true leaves). Prior to treatment, each pot was thinned to five plants of uniform height and stage of growth.

The test spray solution was prepared by dissolving 199.3 mg HOE 039866 in 200 ml of distilled water/Triton X-100 (1000 ppm). Serial dilutions were made of the maximum solution to achieve the lower application rates. A belt sprayer equipped with a single TeeJet 8001-E nozzle was used to apply a single treatment. A nozzle height of 12 inches and a nozzle pressure of 50 psi were used to achieve a spray swath of 20 inches.

Specific study parameters such as photoperiod, temperature, relative humidity and irrigation schedules were included in the report.

- C. <u>Dosage</u>: HOE 039866 was applied at the rates of 0, 0.025, 0.05, 0.1, 0.2, and 0.4 lb ai/A to all eight plant species. An additional treatment of HOE 039866 was applied to ryegrass at the rates of 0, 0.0025, 0.005, 0.010, 0.020, and 0.040 lb ai/A to determine a no-effect level on plant height and dry weight. Treatment application rates were calculated on the percent active ingredient of the technical material (i.e., 96.2% ai).
- Design: Each crop/treatment combination was replicated three times (10 seeds/pot, 3 pots/treatment level). After treatment, the pots were randomized within crops and among treatments and placed in a greenhouse. Seedling height was recorded prior to treatment and 21 days after treatment. Phytotoxicity ratings were recorded at 7, 14, and 21 days after treatment. Twenty-one days after treatment, the plants within treatment replicates (pots) were cut at soil level and dried in a pre-weighed paper bag at 70°C for a minimum of 48 hours. After drying, the dry weight of the plant material was recorded.

Plant height was measured by extending the seedling to its maximum height and recording the height to the nearest millimeter. The mean plant height was calculated for each treatment. The phytotoxicity ratings evaluated five observable toxic effects: 0-indicates no effect; 1-indicates slight plant effect; 2-indicates a moderate effect, e.g., mild stunting or chlorosis; 3-indicates a severe effect; and 4-indicates a total effect or plant death.

- E. <u>Statistics</u>: Percent detrimental effect was calculated using the following equation:
 - % effect = (<u>treatment mean control mean</u>) x 100 control mean

The percent increase in height from day-0 reading was calculated using the following equation:

% increase = $\frac{\text{(day-21 mean)} - \text{(day-0 mean)}}{\text{day-0 mean}}$ X 100

The percent effect on growth was calculated for each treatment using the following equation:

A one-way analysis of variance model for data with equal subsamples was used to analyze the data. The percent detrimental effect values on each replicate mean were input into a SAS probit analysis procedure to calculate EC values.

12. <u>REPORTED RESULTS</u>: Table A (attached) lists the NOEC, EC25, and EC50 values, along with the parameters in which these concentrations were observed. Detailed results for each specific parameter are described below.

Phytotoxicity rating. Table 16 (attached) summarizes the NOEC values of HOE 039866 for mean phytotoxicity rating. Treatment of all plant species with HOE 039866 at a concentration of 0.2 lb ai/A did not result in a significant effect (p <0.05) on the day-21 mean phytotoxicity rating on any of the ten crops tested. Treatment with the maximum concentration of 0.4 lb ai/A resulted in a significant effect (p <0.05) on the 21-day mean phytotoxicity rating of lettuce, carrot and tomato. Crops listed (with NOEC, lb ai/A) in order of increasing sensitivity to HOE 039866 based on phytotoxicity rating NOEC values, are as follows:

soybean = cucumber = cabbage = oat = ryegrass = corn = onion
(0.4) < lettuce = carrot = tomato (0.2)</pre>

Plant height. Table 17 (attached) summarizes the NOEC, EC25 and EC50 of HOE 039866 on plant height. Treatment of all ten plant species with HOE 039866 at the lowest concentration of 0.025 lb ai/A resulted in a significant effect (p <0.05) on plant height of ryegrass at the 21-day

observation period. Treatment with the maximum concentration of 0.4 lb ai/A resulted in a significant effect (p <0.05) on plant height of lettuce, cucumber, and ryegrass at test termination (21 days). Ryegrass required a study continuation to determine a plant height no-effect level. Cucumber exhibited 157% increase in mean height with a 41% beneficial effect on growth at the maximum concentration of 0.4 lb ai/A. Plant species listed (with NOEC, lb ai/A) in order of increasing sensitivity to HOE 039866, based on plant height NOEC values, are as follows:

soybean = carrot = tomato = cabbage = oat = corn = onion (0.4) < lettuce = cucumber (0.2) < ryegrass (0.04)

All plant species except cucumber and corn exhibited a plant height dose-response relationship. Due to a lack of dose response to HOE 039866, EC values were not determined for cucumber and corn. Cabbage was the least sensitive plant species while lettuce was the most sensitive. Crops listed (with EC50, lb ai/A) in order of increasing sensitivity to HOE 039866, based on plant height EC50 values, are as follows:

cabbage (3.9×10^8) < oat (701,000) < carrot (43,400) < soybean (844) < ryegrass (158) < onion (45.3) < tomato (40.3) < lettuce (0.267)

Plant dry weight. The NOEC, EC25, and EC50 of HOE 039866 for plant dry weight are summarized in Table 18 (attached). Treatment of all plant species with glufosinate at the lowest concentration of 0.025 lb ai/A resulted in a significant effect (p <0.05) in plant dry weight of ryegrass. Treatment with the maximum concentration of 0.4 lb ai/A resulted in a significant effect (p <0.05) on plant dry weight of soybean, lettuce, cucumber, and ryegrass. Ryegrass was the most sensitive and required a study continuation to determine a dry weight no-effect level. Plants species listed (with NOEC, lb ai/A) in order of increasing sensitivity to HOE 039866, based on dry weight NOEC values, are as follows:

carrot = tomato = cabbage = oat = corn = onion (0.4) <
soybean (0.2) < lettuce = cucumber (0.05) < ryegrass (0.04)</pre>

Carrot, oat and corn did not exhibit a dose response to HOE 039866 at the concentrations tested; therefore, EC values were not determined. Probit analysis of the plant dry weight data showed that onion was the least sensitive plant species while lettuce was the most sensitive. Plants listed (with EC50, lb ai/A) in order of increasing sensitivity to

HOE 039866, based on plant dry weight EC50 values, are as follows:

onion (257) < ryegrass (61.0) < cabbage (38.9) < cucumber (5.53) < tomato (2.46) < soybean (2.06) < lettuce (0.24)

13. STUDY AUTHOR'S CONCLUSIONS/QUALITY ASSURANCE MEASURES:
No conclusions were stated by the author. The study was
inspected by the Quality Assurance Unit of Pan-Agricultural
Labs, Inc. on several occasions to assure compliance with
Good Laboratory Practice (GLP) Standards.

14. REVIEWER'S DISCUSSION AND INTERPRETATION OF STUDY RESULTS:

- A. <u>Test Procedure</u>: The test procedures followed the SEP and Subdivision J guidelines. No major discrepancies were observed in the test procedures or report.
- B. <u>Statistical Analysis</u>: Statistical analyses were conducted by the reviewer for selected species and parameters using the analysis of variance with Tukey's, Bonferroni's and Dunnett's tests (attached). The results were in general agreement with those presented by the author except for the following discrepancies:
 - o Differences were observed between the reviewer's and the author's statistical NOEC values for lettuce and tomato based on phytotoxicity rating. The reviewer's NOEC value for both lettuce and tomato was 0.1 lb ai/A, whereas the author's NOEC value was 0.2 lb ai/A.
 - o Differences were observed between the reviewer's and the author's statistical NOEC values for tomato and onion based on plant height data. The reviewer's NOEC value for both tomato and onion was 0.2 lb ai/A, whereas the author's NOEC value was 0.4 lb ai/A.

EC25 and EC50 values for selected species were calculated by the reviewer using a Lotus 1-2-3 regression analysis. Some differences were observed between the reviewer's calculated EC values and those reported by the author. These differences, however, do not affect the overall conclusions of the report since the EC values were greater than the maximum application rate of 0.4 lb ai/A. The following discrepancies were observed:

o Regression analyses of plant height data indicate differences in EC25 and EC50 values for cabbage, tomato

and onion. The reviewer's calculated EC25 and EC50 values for cabbage (6.36 lb ai/A and 79.73 lb ai/A, respectively), were not in agreement with the author's values of 16,200 lb ai/A and 3.9 x 10 lb ai/A, respectively. Also, the reviewer's calculated EC50 values for tomato and onion (4.60 and 338.39 lb ai/A, respectively) differed from the author's values of 40.2 and 45.3 lb ai/A, respectively.

o The reviewer's regression analysis of plant dry weight data for cabbage indicated an EC50 value of 2.75 lb ai/A. The author's reported EC50 value was 38.9 lb ai/A.

<u>Discussion/Results</u>: This report is considered to be C. scientifically valid. This data validation process has been conducted based on the assumption that the maximum application rate is 0.4 lb ai/A. Treatment with the maximum concentration of 0.4 lb ai/A resulted in a significant effect (p <0.05) on the 21-day mean phytotoxicity rating of lettuce, carrot, and tomato. Treatment with the maximum concentration of 0.4 lb ai/A resulted in a significant effect (p <0.05) on plant height of lettuce, tomato, cucumber, ryegrass, and onion. Significant effects (p <0.05) were observed on plant dry weight of soybean, lettuce, cucumber, and ryegrass at the maximum treatment concentration of 0.4 1b ai/A. Ryegrass and lettuce were the most sensitive plant species to HOE 039866.

Based on the author's and the reviewer's statistical analyses, the NOEC values for lettuce, ryegrass and cucumber were <0.05 lb ai/A HOE 039866. The NOEC value for tomato was 0.1 lb ai/A while the values for soybean, carrot, and onion were 0.2 lb ai/A. The NOEC values for cabbage, oat, and corn were 0.4 lb/A, the highest concentration tested. The EC50 value for lettuce (0.24) is <0.75 lb ai/A. The EC25 values for soybean, lettuce, tomato, cucumber, cabbage, and ryegrass were also <0.75 lb ai/A. The EC25 and EC50 values for carrot, oat and onion were >0.75 lb ai/A. Based on the results of the study, a Tier III study is recommended at least for those plant species exhibiting phytotoxicity effects.

D. Adequacy of the Study:

- (1) Classification: Core.
- (2) Rationale: Although differences were observed

MRID No. 413961-12

between the reviewer's and the author's statistical analyses, these differences did not affect the general validity of the study.

- (3) Repairability: N/A.
- 15. COMPLETION OF ONE-LINER: N/A.

. Table A-a: Modified with reviewer's values.

The following table lists the lowest observed no-effect concentration (lb ai/A), EC_{25} and EC_{50} values, along with the parameter in which these concentrations were observed.

	No-effect Concentration	Parameter ^y Measured	EC ₂₅	Parameter Measured	EC ₅₀	Parameter Measured	
Soybean	0.2	dw	0.405	đw	2.06	dw	
Lettuce	0.05	dw	0.137	dw	0.240	dw	
Carrot	0.2) pr	127	ph	43,400	ph	
Tomato	0.2	pr	0.74	dw	2.46	dw	
Cucumber	0.05	dw	0.391	dw	5.53	dw	
Cabbage	0.4	pr,ph,dw	0.444	₫₩	38.9 2,7	-S dw	
Oat	0.4	pr,ph,dw	201	ph	701,000	ph	
Ryegrass	0.04	ph,dw	0.607	dw	61.0	dw	
Corn	0.4	pr,ph,dw	ND^{Z}		ND		
Onion	0.4 0.2	pr,ph,dw	2.48	ph	453 25	b ph, dw	

^y ph - plant height, pr - phytotoxicity ratings, dw - dry weight determinations.

² A dosage response curve was not evident or the highest treatment concentration tested (0.4 lb ai/A) did not result in a significant effect; therefore, a probit analysis could not be conducted to determine EC_{25} and EC_{50} values.

«Table 16-A: Modified with rewiewers values.

Table 16. Statistical no effect concentration* (lb ai/A) and the mean phytotoxicity rating** at that concentration rate of HOE 039866 on plants 21 days after treatment.

Plant Species	No-effect Concentration	Mean Phytotoxicity Rating
Soybean	0.4	0.2
<u>Lettuce</u>	0.2 0.1	·1.0 0/H
Carrot	0.2	0.3
Tomato	0.2 0.1	0.5 . 0 1
Cucumber	0.4	0.2
Cabbage	0.4	0.1
Oat	0.4	0.0
Ryegrass	0.4	0.1
Corn	0.4	0.0
Onion	0.4	0.7

^{*} Highest treatment concentration which was statistically similar to the control, according to Duncan's New Multiple Range Test (p < 0.05).

^{**} Phytotoxicity ratings based on 0-4 scale, with 0 = no effect, 1 = slight effect limited to one leaf, 2 = moderate effect on whole plant, 3 = severe effect on whole plant, and 4 = total effect or plant death.

" Table 17-a: Modified with reviewer's values

Table 17. Statistical no-effect concentration* (lb ai/A) rate of HOE 039866 on plant height, along with EC25 and EC50 values.

Plant Species	No-effect Concentration	EC25	EC50
Soybean	0.4	31.2	844
Lettuce	0.2	0.182	0.267
Carrot	0.4	127	43,400
Tomato	0.4 0 2	1.52 0.86	40.2 460
Cucumber	0.2	ND**	ND
Cabbage	0.4	16,200 6 36	3.9 x 10 (8) 79.73
Oat	0.4	201	701,000
Ryegrass	0.04	2.25	158
Corn	0.4	ND	ND
Onion	0.4 0.2	2.48 22	45.3 33839

^{*} Highest treatment concentration which was statistically similar to the control, 21 days after treatments, according to Duncan's New Multiple Range Test (p < 0.05).

^{**} A dose response was not evident with the treatment range used or the highest treatment concentration was not significantly different (p < 0.05) from the control, therefore, a probit analysis could not be conducted nor EC values determined.

*Table 18-a: Modified with reviewer's values

Table 18. Statistical no-effect concentration* (lb ai/A) rate of HOE 039866 on plant dry weight, along with EC25 and EC50 values.

Plant Species	No-effect Concentration	EC25	EC50
Soybean	0.2	0.405	2.06
Lettuce	0.05 0.1	0.137	0.240
Carrot	0.4	ND**	ND
Tomato	0.4	0.740	2.46
Cucumber	0.05	0.391	5.53
Cabbage	0.4	0.444	38.9 2-75
Oat	0.4	ND	ND
Ryegrass	0.04	0.607	61.0
Corn	0.4	ND	ND
Onion	0.4	25.6	256

^{*} Highest treatment concentration which was statistically similar to the control, 21 days after treatments, according to Duncan's New Multiple Range Test (p < 0.05).

^{**} A dose response was not evident with the treatment range used or the highest treatment concentration was not significantly different (p < 0.05) from the control, therefore, a probit analysis could not be conducted nor EC values determined.

"ANOVA: for tomato - phytotoxicly data at day 21.

Analysis of Variance

File: glutomph

Date: 06-08-1990

FILTER: None

N's, means and standard deviations based on dependent variable: PH

*	Indicates :	statistics are	e collapsed over	thic factor	
	Factors: '	TR Treatme		arramar i batha triari	
		* * HOE 039		Mean	S.D.
			\ <i>I</i> 170	0.3111	0.5737
			15	0.0667	0.2582
	a: 	2 * - 0.0x	15	0.0000	0.0000
		- 0.00	1.5	0.2000	0.4140
		() · (O	15	0.0667	0.2582
		, 0.70	15	0.4667	0.6399
	*	17-70	15	1.0667	0.7037
		***	30	0.3333	0.6609
	*		30	0.2333	0.4302
			30	0.3667	0.6149
	1.		! !	0.0000	0.0000
	1		Em.	0.0000	0.0000
	.t.			0.2000	0.4472
			ET.	0.000	0.0000
			Trans.	0.000	0,0000
			E	0.000	0.0000
	S S			0.4000	0.5477
	3			0.2000	0.4472
	 4			0.000	0.0000
	4			0.000	0.0000
	4	<u> </u>		0.2000	0.4472
			er Li	0,000	0.0000
			ij	0.0000	0.0000
		2	S	0.4000	0.5477
				1.0000	0.7071
		1.		1.6000	0.5477
	ර ර	<u> </u>	5	0,6000	0.5477
• • • • • • • • • • • • • • • • • • • •	£3	- 1 .	in	1.0000	0.7071
		««»«»«»«»«»«»«»««»««»««»««»««»«««»«««»	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

Frav den de de			***************************************				İ	
Fmax for testing	nomogeneity	of between	subjects	varianc	es:	Not	defi	ned
Analysis of Varia	mce	Dependent	variable:				***************************************	
Source Between Subjects T (TRT) R (REP) TR Subj w Groups	89 2 5 1 2	SS (H) 9.2889 2.3556 0.2889 5.4444 1.2000	MSS 2.4711	F 15.886 0.929	0.0 0.4 0.0	041		

* Indicates synificant effect (px0.05)

Date: 06-08-1990

FILTER: None

هر ا

Post-hoc tests for factor T (TRT)

Level	Mean	Level	Mean
1	0.067	á	1.067
2	0.00		
3	0.200		
4	0.067		
5	0.467		

		Bon-	
Comparison	Tukey-A*	færroni	Dunnett
1 > 2	<u>.</u>		
1 < 3			
1 = 4			
1 < 5	0,1000		0,0500
1 < 6	0.0100	0.0000	0.0100
2 < 3			N.A.
2 < 4			N.A.
2 < 5	0,0500	0.0273	N.A.
2 < 6	0.0100	0.0000	N.A.
3 > 4			N.A.
3 < 5			N.A.
3 < 6	0.0100	0.0000	N.A.
4 < 5	0.1000	`	N.A.
4 < 6	0.0100	0.0000	N.A.
5 < 6	0.0100	0.0014	N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

Post-hoc tests for factor R (REP)

Level	Mean
1.	0.333
2	0,233
3	0.367

Bon-

Comparison Tukey-A* ferroni Dunnett

1 > 2

1 < 3

2 < 3

N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

" AMOVA: for carrot - phytotoxicity date at day 21

Analysis of Variance

File: glucarph

Date: 06-08-1990

FILTER: None

N's, means and standard deviations based on dependent variable: PH

÷	Indicates	statistics are	collapsed over	this factor	:
	Factors:			Mean	(m) ym
			766 (16 ai/A), N	0.1778	S.D.
		1 *- Conhot	15	0.0000	0.4127
		2 * - 0·0×-	15	0.0000	0.000
		3 * - 0 · 05-	15	0.0667	0.0000
		4 * - 0.10	15		0.2582
		5 * - 0.20		0.2467	0.4577
	*	6 * -0.40	4 tu:	0.2667	0.5936
		* 1	30	0.4667	0.5164
		* 2	30	0.1333	0.3457
		* 3	30	0.1333	0.3457
		**************************************		0.2667	0.5208
		1 2		0.0000	0.00φο
		1 3	2000 1002 1000 1000	0.000	0,0000
		2 1		0.000	0.0000
		2 2	1.000 	0.000	0.0000
		23	filter lang Versi	0.0000	0.0000
		Z 1	5	0.000	0.0000
		3 2	5.00°	0.000	0.0000
		3 3	ener Lega	0.2000	0.4472
		4 1	Fine.	0.0000	0.0000
		4 2		0.2000	0.4472
		4 3		0.2000	0.4472
		5 1	1	0.4000	0.5477
			=	0.000	0.0000
			E	0.2000	0.4472
			5	0.6000	0.8944
			Erri Tour	0.6000	0.5477
				0.2000	0.4472
	<u> </u>	3	See	0.6000	0.5477
				to an entry of the	V = U4//

Ellison many of the same of th									
Fmax for testing	homogeneity	of	between	subjects	varianc	esi	Not	defir	ned
Analysis of Vari	Bnce			variable:	*****************		***************************************	E-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
Source Between Subjects T (TRT) R (REP) TR Subj w Groups	89 15 5 2 2 0 10 1	38 (5.15 2.62 3.35 .37	56 22 56 78	MSS 0.5244 0.1778 0.1378 0.1500	F 3.496 1.185 0.919	0.00 0.30 0.5	93		

* Indicates organificant effect (px0.00)

File: glucarph

Date: 06-08-1990

FILTER: None

Post-hoc tests for factor T (TRT)

Level	Mean	Level	Mean
4	0.000	6	0.467
2	0.000		
3	0.067		
4.	0.267		
S	0.267		

Comparison	TulenumAx	Bon-	T2
1 = 2	Tukey-A*	Lett.Cul	Dunnet
1 < 3			
1 < 4			
1 < 5			
1 < 6	0.0500	0.0228	0.0100
2 < 3	And the same of the same	To the talk plane about the talk	N.A.
2 < 4			N. A.
2 < 5			N.A.
2 < 6	0.0500	0.0228	N.A.
3 < 4			N.A.
3 < 5			N.A.
3 < 6	0.1000	0.0908	N.A.
4 = 5			N.A.
4 < 6			N.A.
5 < 6			N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

Post-hoc tests for factor R (REP)

Lavel	Mean
1	0.133
2	0.133
3	0.267

Bon-

Comparison Tukey-A* ferroni Dunnett

1 = 2

1 < 3

2 < 3

N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

ANOVA: for lettuce - phytotoxicity data at day -21

Analysis of Variance

File: gluletph

Date: 06-08-1990

FILTER: None

N's, means and standard deviations based on dependent variable: PH

*		Act. Tel	ore: LH
•	Indicates statistics are collapsed over		
	Track Tourseld over	this farton	
		1 305 00 15 00 17	
		Mean	/*** v**
	1 * Control 190		S.D.
	1 500	0.7778	1.4361
		0,000	0.0000
	3 *-0.6:	0.000	
	4 85.		0,000
	1 " - 0 . 201	0.000	0.00do
		0.4000	0.5071
	* 6 * - 0 . 115	1.0000	
	0.40		1.6475
	, i., , , , , , , , , , , , , , , , , ,	3.2667	1.1629
	* ²	0.6667	
	* 30	0.9000	1.1842
	*** ****		1.6263
	*10 di,	0.7667	1.5013
		0.000	0.0000
	13	0.000	
	Ţnage .		0.000
	-f ,f.	0.000	0.0000
		0.000	0.0000
		0.000	
			0.0000
	"tee" aft.	0.000	0.0000
	'a.' <u></u>	0.000	0.0000
	3 3	0.0000	
	part of the second of the seco		0.000
		0.0000	0.000
		0.6000	0.5477
	4 3	0.000	
		0.6000	0.000
			0.5477
	that sin	1.2000	1.7889
	5 3	1.8000	
	6 1	0.0000	2.0494
	Vene" all.		0.000
	hand after	2.2000	1.3038
	5	3.6000	
******	in the state of th	4.0000	0.8944
f	or testing bease.	· • ***********************************	0.000
-	V S D V LITT Proposition of the contract of th		

Fmax for testing homogeneity of between subjects variances: Not defined Analysis of Variance

Mnalysis of Varia		***************************************	********************			
	ance	Dependent	variable:	FH	***************************************	
Source Between Subjects T (TRT)	df 89 5	SS (H) 183.5556	MSS	-	E.:	
R (REP) TR Subj w Groups	2 10 72	123.0222 0.8222 17.7111 42.0000	24.6044 0.4111 1.7711 0.5833	42.179 0.705 3.036	0.0000 0.5012 0.0029	

* Indicatés symptoment effect (p20.05).

Analysis of Variance

File: gluletph

Date: 06-08-1990

FILTER: None

Post-hoc tests for factor T (TRT)

Level	Mean	Leve1	Mean
1	0,000	Ó	3.267
2 2	0.000		
3	0.000		
4.	0.400		
5	1,000	•	

			Bon-	
Compar	ison	Tukey-A*	færroni	Dunnet
1 ===	2			
1 ===	3			
1 <	4			
1 <	=	0.0100	0:0094	0.0100
1 <	6	0.0100	0.0000	0.0100
2 ==	3			N.A.
2 <	4			N.A.
2 <	5	0.0100	0.0094	N.A.
2 <	6	0.0100	0,0000	N.A.
3 <	4			N.A.
3 <	S	0.0100	0.0094	N.A.
3 <	á	0.0100	0.0000	N.A.
4 <	5			Ň.A.
4 <	6	0.0100	0.0000	N.A.
5 <	6	0.0100	0.0000	N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

Post-hoc tests for factor R (REP)

Level	Mean
1	0.667
2	0.900
3	0.767

Bon-

Comparison Tukey-A* ferroni Dunnett

1 < 2

1 < 3

2 > 3

N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

ANOVA for lettuce - phytotoxicity data al day 17.

Analysis of Variance

File: gluletph

Date: 06-08-1990

FILTER: None

N's, means and standard deviations based on dependent variable: PH

Factors: TR reatment 15	* Indicat-	un dependent variable: PH
** the organical formula formu	· INDICates statistics are colling.	
** the organical formula formu		er this factor
* * * * * * * * * * * * * * * * * * *	Factors: TR reatment	a my
2 * - 0.02- 3 * - 0.05- 15		M
2 * - 0.02- 3 * - 0.05- 15	1 " (1012 039866/16 ai /A) 90	S.D.
2 * - 0.0 \(\) - 15	Control	0.8111
15	= *- 0.0n-	
4 * - 0.1 15 0.0000 0.0000 5 * - 0.2 15 0.1333 0.5164 6 * - 0.4 15 1.8667 0.7432 15 2.8667 0.6399 1 1 30 0.6667 1.0283 1 1 5 0.0000 0.0000 1 2 5 0.0000 0.0000 2 1 5 0.0000 0.0000 2 2 5 0.0000 0.0000 2 3 5 0.0000 0.0000 3 1 5 0.0000 0.0000 3 2 5 0.0000 0.0000 4 1 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 3 5 0.0000 0.0000 4 3 5 0.0000 0.8944 5 2 1.8000 0.8367 5 3 2.4000 0.5477 6 1 5 2.2000 0.5477 6 3 3.4000 0.5477	○ * - A.A	
* 5 * - 0.2		0.0000
6 * - 0 · 4 * 1 * 1 * 2 * 30 *		A 1777
* 1	7 - 0 - 2	
* 2 30 0.4667 1.0283 1.0283 1.0283 1.10283 1.11 30 0.7333 1.4499 1.12 5 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0	# " - D: 4	
* 3 30 1.0283 1.0283 1.4499 1.1 30 0.7333 1.4499 1.1725 1.2 5 0.0000 2.1 5 0.0000 2.2 5 0.0000 2.3 5 0.0000 3.1 5 0.0000 3.2 5 0.0000 3.3 5 0.0000 4.1 5 0.0000 4.2 5 0.0000 4.2 5 0.0000 4.2 5 0.0000 5.3 5 0.0000 6.0000 7.0000	ete turn or	4.8667 0.4396
1 1 30 0.7333 1.4499 1 1 2 5 0.0000 0.0000 1 3 5 0.0000 0.0000 2 1 5 0.0000 0.0000 2 2 5 0.0000 0.0000 2 3 5 0.0000 0.0000 3 1 5 0.0000 0.0000 3 2 5 0.0000 0.0000 3 3 5 0.0000 0.0000 4 1 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 3 5 0.0000 0.0000 5 1 5 0.0000 0.0000 5 1 5 0.0000 0.0000 5 1 5 0.0000 0.0000 5 2 5 1.8000 0.8367 5 3 4000 0.5477 6 1 5 2.2000 0.4472 6 3 5 3.4000 0.5477	elem	
1 1 5 0.0000 1.1725 1.1725 1.2 5 0.00000 0.0000 0.0	· · · · · · · · · · · · · · · · · · ·	
1 2 5 0.0000 0.0000 1 3 5 0.0000 0.0000 2 1 5 0.0000 0.0000 2 2 5 0.0000 0.0000 3 1 5 0.0000 0.0000 3 2 5 0.0000 0.0000 4 1 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 3 5 0.4000 0.8944 5 2 1.8000 0.8367 5 3 2.4000 0.5477 6 1 5 2.2000 0.5477 6 2 5 3.4000 0.5477 0 3 0.4472 0.5477 0 4472 0.5477	· 1 1	(1
1 3 5 0.0000 0.0000 2 1 5 0.0000 0.0000 2 2 5 0.0000 0.0000 2 3 5 0.0000 0.0000 3 1 5 0.0000 0.0000 3 2 5 0.0000 0.0000 3 3 5 0.0000 0.0000 4 1 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 3 5 0.4000 0.8944 5 2 1.8000 0.8367 5 3 2.4000 0.5477 6 1 5 2.2000 0.4472 6 3 3.4000 0.5477		0.0000
2 1 5 0.0000 0.0000 2 2 5 0.0000 0.0000 2 3 5 0.0000 0.0000 3 1 5 0.0000 0.0000 3 2 5 0.0000 0.0000 4 1 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 3 5 0.4000 0.8944 5 1 5 0.0000 0.88367 5 2 5 1.8000 0.8367 6 1 5 2.4000 0.5477 6 2 5 2.2000 0.4472 6 3 3.4000 0.5477		0.0000
2 2 5 0.0000 0.0000 2 3 5 0.0000 0.0000 3 1 5 0.0000 0.0000 3 2 5 0.0000 0.0000 3 3 5 0.0000 0.0000 4 1 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 3 5 0.4000 0.8944 5 1 5 0.0000 0.8367 5 2 1.8000 0.5477 6 1 5 1.4000 0.5477 6 2 5 2.2000 0.4472 6 3 3.4000 0.5477	The state of the s	
2 2 5 0.0000 0.0000 3 1 5 0.0000 0.0000 3 2 5 0.0000 0.0000 3 3 5 0.0000 0.0000 4 1 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 3 5 0.4000 0.8944 5 1 5 0.0000 0.8944 5 2 1.8000 0.8367 5 3 2.4000 0.5477 6 2 5 2.2000 0.4472 6 3 3.4000 0.5477	ate ate	9.0000 0 0000
5 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000	the thing	U. 0000
3 2 5 0.0000 0.0000 3 3 5 0.0000 0.0000 4 1 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 3 5 0.4000 0.8944 5 1 5 0.0000 0.8944 5 2 5 1.8000 0.8367 5 3 2.4000 0.5477 6 1 5 2.2000 0.4472 6 3 3.4000 0.5477	*****	
3 2 5 0.0000 0.0000 3 3 5 0.0000 0.0000 4 1 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 3 5 0.4000 0.8944 5 1 5 0.0000 0.8944 5 2 5 1.8000 0.8367 5 3 2.4000 0.5477 6 1 5 2.2000 0.4472 6 3 3.4000 0.5477	45.	
3 3 5 0.0000 0.0000 4 1 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 3 5 0.4000 0.8944 5 1 5 0.0000 0.8944 5 2 1.8000 0.8367 5 3 2.4000 0.5477 6 1 5 2.2000 0.4472 6 3 3.4000 0.5477		0.0000
4 1 5 0.0000 0.0000 4 2 5 0.0000 0.0000 4 3 5 0.4000 0.0000 5 1 5 0.0000 0.8944 5 2 5 1.8000 0.8367 5 3 5 2.4000 0.5477 6 1 5 2.2000 0.4472 6 3 5 3.4000 0.5477		0.0000
4 2 5 0.0000 0.0000 4 3 5 0.4000 0.0000 5 1 5 0.0000 0.8944 5 2 5 1.8000 0.0000 5 3 5 2.4000 0.5477 6 1 5 1.4000 0.5477 6 2 5 2.2000 0.4472 6 3 3.4000 0.5477	pros.	A AAAA Y * VVVV
5 0.4000 0.0000 0.8944 5 1 5 0.0000 0.8944 0.0000 0.8944 0.0000 0.8367 5 2.4000 0.5477 6 1 5 1.4000 0.5477 6 2 5 2.2000 0.4472 6 3 5 3.4000 0.5477		×.0000
5 1 5 0.0000 0.8944 0.0000 0.8000 0.0000 0.0000 0.0000 0.8367 0.5477 0.5477 0.5477 0.5477 0.5477 0.5477 0.5477 0.5477 0.5477	4 stars	0.0000 0.0000
5 1.8000 5 2 5 1.8000 5 3 5 2.4000 6 1 5 1.4000 6 2 5 2.2000 6 3 5 3.4000 0.0000	1 1	V. 4000 0 9044
5 3 5 2.4000 0.8367 0.5477 0.5477 0.5477 0.5477 0.5477 0.5477 0.5477 0.5477 0.5477 0.5477	The state of the s	
5 3 2.4000 0.5477 6 1 5 1.4000 0.5477 6 2 5 2.2000 0.4472 6 3 5 3.4000 0.5477	ner die	
6 1 6 2 5 2.2000 6 3 5 3.4000 0.5477		7 AAAA Y 900/
6 2 5 2.2000 0.3477 6 3 5 3.4000 0.5477		1 7000 Y* U**//
5 3.4000 0.4472 0.5477		9 9555 Y W Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
		T AAAA VETTAL
	The state of the s	3.0000

Fmax for testing	homogene	lity of batus		3.0000		(
Analysis of Varia	Trce			***************************************	ies: Not	:
Source		Dependent	Variab](e: PH		
Between Subjects T (TRT)	df 89 5	SS (H) 133.7889	MSS	ļ 	þ	
R (REP) TR Subj w Groups	2 10 72	116.5889 2.2889 4.5111 10.4000	23.3178 1.1444 0.4511 0.1444	7.923	0.0000 0.0008 0.0023	

* Indicates orgnificant effect (pxo.ox)

Analysis of Variance

File: gluletph

Date: 06-08-1990

FILTER: None

Post-hoc tests for factor T (TRT)

Level	Mean	Level	Mean
2.	0.000	Ć	2.867
and and	0.000		
•	0,000		
4 .	0,133		
5	1.867		

Bon-

Comparison	Tukey-A*	ferroni	Dunnet
1 = 2	#*		
1 = 3			
1 < 4.			
1 < 5	0.0100	0.0000	0.0100
1 < 4	0.0100	0.0000	0.0100
2 = 3			N.A.
2 < 4			N.A.
2 < 5	0.0100	0,0000	N.A.
2 < 6	0.0100	0.0000	N.A.
3 < 4			N.A.
3 < 5	0.0100	0.0000	N.A.
3 < 6	0.0100	0.000	N.A.
4 < 5	0,0100	0.000	N.A.
4 < 6	0.0100	0.000	N.A.
5 < 6	0.0100	0.0000	N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

Post-hoc tests for factor R (REP)

Level	Mean
1	0.667
2	1.033
7	0.733

Bon-

Comparison	Tukey-A*	ferroni	Dunnett
1 < 2	0.0100	0.0012	0.0100
1 < 3			
2 > 3	0.0100	0,0094	N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

"ANOVA: for onion-plant height data I day-21

Analysis of Variance

File: gluoniht

Date: 06-08-1990

FILTER: None

Subj w Groups

N's, means and standard deviations based on dependent variable: HT

W 7 - 1 · ·		ochemient vari	able: HT
* Indicates statistics a	are collapsed		
	corrabsed over	this factor	
ractors To Wealmi	4. [-		:
مماري ي	2011 14 . 12 \ N	Mean	
* * Hor Os	9866 (\$ ac/A) 00	1// 77//	S.D.
· ·· Control	15	166.3667	30.4489
2 *- 0.02		172.8667	21.4405
3 *-0.02	15	176.0000	20.6121
4 * -0:1	15	162.5333	0/ 7014
5 * - 0.3	15	170.2000	26.3814
_ 0 2	15	170 (22)	38.2047
#-6*-0.4	1.5	172.1333	17.0498
* 1	30	144.4667	42.8650
* 2		160.2333	37.4273
* 3	30	169.2000	21.5605
4 1	30	169.6667	
1 2	5	185.0000	30.3512
	Sill Sur	144 4000	21.5058
1 3	Tara-	166.4000	24.9459
2 1		167,2000	15.7385
2 2	5	162.2000	16.6193
2 3	5	174.4000	17.7848
3 1	Smart Smart	191.4000	
3 2	F==2 2	149.6000	18.8892
3 3	gram ming navi	162.0000	33.6497
_	5		18.8680
4 1	5	176.0000	22.6164
4 2	5	171.2000	22.6650
4		186.8000	22.0613
5 1	Salar Nagar	152.6000	
5 2		172.8000	58.0973
5 3	film.	168.0000	19.8796
	5	175 (000	9.6437
6 1	. 5	175.6000	22.1878
6 2		120.6000	64.4345
6 3		157.6000	28.8149
	:::	155.2000	19.4216
Fmax for testing homogeneity Number of variances= 18 df	2 m f* 1 s		- / = T.E.J. ()
Number of Variances 10	of between subjec	ts variances.	7 2 2 2 C
1.C C1	per variance= 4		44.64
Analysis of Variance			
A A A A STANCE	Dependent variab	1.00 = 1.190	
Source	. variab	TE: HI	
	SS (H) MSS		
THE PUBLICUS RO - CORT	55 (H) MSS 4.8830	E. P	
(TRT) = 101=	(") prom a como o		
PC (PEP)	9.5674 2031.913	5 2.439 0.04	
TR .5 1698	6.0667 848.033		20

848.0333

1067.0867

833.1720

1.018 0.3639

0.2558

1.281

* Indicates significant effect (px0.05)

10670.8662

59988.3830

10

72

Analysis of Variance

File: gluoniht

Date: 06-08-1990

FILTER: None

Post-hoc tests for factor T (TRT)

Level	Mean	Level	Mean
1	172.867	6	144.467
2	176.000		
3	162,533		
4	170.200		
ij	172.133		

1 < 2 1 > 3	Tukey-A*	Bon- ferroni	Dunnett
1	0.1000	0.0571	0.0500 N.A. N.A. N.A. N.A. N.A. N.A. N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

Post-hoc tests for factor R (REP)

Level	Mean
1	160.233
2	169.200
I	169.667

Bon-Comparison Tukey-A* ferroni Dunnett 1 < 2

1 < 3

N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000), A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

ANOVA: for tomato-plant height data for day 21

Analysis of Variance

File: glutomht

Date: 06-08-1990

FILTER: None

N's, means and standard deviations based on dependent variable: HT

Factors: TR HTE 039866 (db/hi/A) N Mean S.D. 1 *-Control 15 101.6667 14.8548 2 *-0.01 15 100.7333 16.9135 3 *-0.01 15 96.2000 12.4683 5 *-0.1 15 96.2000 17.6837 5 *-0.1 15 96.2667 22.9362 *-6 *-0.4 15 85.0000 17.6837 1 1 30 95.2667 19.2388 1 1 30 95.2667 19.2388 1 1 30 96.1000 16.9285 1 1 5 101.8000 10.1833 1 2 5 101.6000 15.0765 1 3 5 101.6000 17.9917 2 2 5 115.0000 17.9917 2 2 5 115.0000 17.9917 2 2 5 96.8000 12.2760 3 3 5 94.0000 5.5227 4 1 5 93.4000 18.7936 3 3 5 94.0000 5.5227 4 1 5 93.4000 15.7226 5 1 5 98.8000 15.7226 5 1 5 98.8000 15.7226 5 1 5 98.8000 15.7226 5 1 5 98.8000 15.7226 5 1 5 98.8000 15.7226 5 1 5 98.8000 15.7226 5 1 5 98.8000 28.2966 5 2 5 97.2000 17.7398 6 1 5 97.2000 17.7398 6 2 5 97.2000 17.7398 6 3 5 97.2000 17.7398 6 4 1 5 75.2000 17.7398 6 5 90.0000 14.4999 6 5 90.0000 14.4999 6 5 90.0000 14.4999	**	Indicates	5 5	tatistics	s are collapsed	d over	this factor	
1 * - Cohm		Factors:	Т	R une	news	1) N	Pol	2°4 yes
1 * - Cohm			-9/-	* Liot C	08 78 00 (May per / 1	り。こ		
2 * - 6 ∘ N			1.	* - Conh	nd			
3 * -0 · 0 ▼ 15 96.2000 12.4683 13.4519 5 * -0 · 2 15 96.2667 22.9362			2	* - 6~1	1/-			
4 * - 0 · 1					-			
5 * - 0.2 6 * - 0.4 15 96.2667 22.9362 17.6837 18.1 30 95.2667 19.2388 30 96.1000 16.9285 30 96.1000 16.9285 30 96.1000 16.9285 30 96.1000 16.9285 31 5 101.8000 10.1833 12 5 101.6000 21.0071 22 2 5 115.0000 17.9917 22 2 5 115.0000 13.9284 23 5 91.0000 9.2195 3 1 5 96.8000 12.2760 3 2 5 97.8000 18.7936 3 3 5 94.0000 5.5227 4 1 5 93.4000 14.6901 4 2 5 93.4000 14.6901 4 2 5 93.4000 15.7226 5 1 5 98.8000 5.7226 5 1 5 98.8000 6.7602 5 1 5 98.8000 6.7602 5 3 5 93.2000 28.2966 5 2 5 97.2000 17.7398 6 2 5 90.0000 14.9499				34	7			
* 6 * 6 · 4								i i
* 1		¥ -			•			I i
* 2		-	*					
* 3			₩.					i i
1 1 5 101.8000 10.1833 1 2 5 101.6000 15.0765 1 3 5 101.6000 21.0071 2 1 5 96.2000 17.9917 2 2 5 115.0000 13.9284 2 3 5 91.0000 9.2195 3 1 5 96.8000 12.2760 3 2 5 97.8000 18.7936 3 3 5 94.0000 5.5227 4 1 5 93.4000 14.6901 4 2 5 84.8000 15.7226 4 3 5 98.8000 6.7602 5 1 5 98.8000 6.6182 5 2 5 87.4000 6.6182 5 3 5 93.2000 26.6214 6 1 5 75.2000 17.7398 6 2 5 90.0000 14.9499			-₩-	3				
1 2 5 101.6000 15.0765 1 3 5 101.6000 21.0071 2 1 5 96.2000 17.9917 2 2 5 115.0000 13.9284 2 3 5 91.0000 9.2195 3 1 5 96.8000 12.2760 3 2 5 97.8000 18.7936 3 3 5 94.0000 5.5227 4 1 5 93.4000 14.6901 4 2 5 84.8000 15.7226 4 3 5 98.8000 6.7602 5 1 5 98.8000 6.6182 5 2 5 87.4000 6.6182 5 3 5 93.2000 6.6182 5 75.2000 17.7398 6.2 5 90.0000 14.9499			1	1				
1 3 5 101.6000 21.0071 2 1 5 96.2000 17.9917 2 2 5 115.0000 13.9284 2 3 5 91.0000 9.2195 3 1 5 96.8000 12.2760 3 2 5 97.8000 18.7936 3 3 5 94.0000 5.5227 4 1 5 93.4000 14.6901 4 2 5 98.8000 6.7002 4 3 5 98.8000 6.7602 5 1 5 98.8000 6.6182 5 2 5 87.4000 6.6182 5 3 5 93.2000 26.6214 6 1 5 75.2000 17.7398 6 2 5 90.0000 14.9499			1	2				
2 1 5 96.2000 17.9917 2 2 5 115.0000 13.9284 2 3 5 91.0000 9.2195 3 1 5 96.8000 12.2760 3 2 5 97.8000 18.7936 3 3 5 94.0000 5.5227 4 1 5 93.4000 14.6901 4 2 5 84.8000 15.7226 4 3 5 98.8000 6.7602 5 1 5 108.2000 28.2966 5 2 5 87.4000 6.6182 5 73.2000 26.6214 6 1 5 75.2000 17.7398 6 2 5 90.0000 14.9499			1	3				
2 2 5 115.0000 13.9284 2 3 5 91.0000 9.2195 3 1 5 96.8000 12.2760 3 2 5 97.8000 18.7936 3 3 5 94.0000 5.5227 4 1 5 93.4000 14.6901 4 2 5 84.8000 15.7226 4 3 5 98.8000 6.7602 5 1 5 108.2000 28.2966 5 2 5 87.4000 6.6182 5 3 5 93.2000 26.6214 6 1 5 75.2000 17.7398 6 2 5 90.0000 14.9499								
2 3 5 91.0000 9.2195 3 1 5 96.8000 12.2760 3 2 5 97.8000 18.7936 3 3 5 94.0000 5.5227 4 1 5 93.4000 14.6901 4 2 5 84.8000 15.7226 4 3 5 98.8000 6.7602 5 1 5 108.2000 28.2966 5 2 5 87.4000 6.6182 5 3 5 93.2000 26.6214 6 1 5 75.2000 17.7398 6 2 5 90.0000 14.9499								i i
3 1 5 96.8000 12.2760 3 2 5 97.8000 18.7936 3 3 5 94.0000 5.5227 4 1 5 93.4000 14.6901 4 2 5 84.8000 15.7226 4 3 5 98.8000 6.7602 5 1 5 108.2000 28.2966 5 2 5 87.4000 6.6182 5 3 75.2000 26.6214 6 1 5 75.2000 17.7398 6 2 5 90.0000 14.9499				3				i i
3 2 5 97.8000 18.7936 3 3 5 94.0000 5.5227 4 1 5 93.4000 14.6901 4 2 5 84.8000 15.7226 4 3 5 98.8000 6.7602 5 1 5 108.2000 28.2966 5 2 5 87.4000 6.6182 5 3 93.2000 26.6214 6 1 5 75.2000 17.7398 6 2 5 90.0000 14.9499								
3 3 5 94.0000 5.5227 4 1 5 93.4000 14.6901 4 2 5 84.8000 15.7226 4 3 5 98.8000 6.7602 5 1 5 108.2000 28.2966 5 2 5 87.4000 6.6182 5 3 5 93.2000 26.6214 6 1 5 75.2000 17.7398 6 2 5 90.0000 14.9499								
4 1 5 93.4000 14.6701 4 2 5 84.8000 15.7226 4 3 5 98.8000 6.7602 5 1 5 108.2000 28.2766 5 2 5 87.4000 6.6182 5 3 5 93.2000 26.6214 6 1 5 75.2000 17.7378 6 2 5 90.0000 14.9499								
4 2 5 84.8000 15.7226 4 3 5 78.8000 6.7602 5 1 5 108.2000 28.2966 5 2 5 87.4000 6.6182 5 3 5 73.2000 26.6214 6 1 5 75.2000 17.7378 6 2 5 90.0000 14.9479						5		
4 3 5 98.8000 6.7602 5 1 5 108.2000 28.2966 5 2 5 87.4000 6.6182 5 3 5 93.2000 26.6214 6 1 5 75.2000 17.7398 6 2 5 90.0000 14.9499						5		
5 108.2000 28.2966 5 2 5 87.4000 6.6182 5 3 5 93.2000 26.6214 6 1 5 75.2000 17.7398 6 2 5 90.0000 14.9499						S		
5 87.4000 6.6182 5 3 5 93.2000 26.6214 6 1 5 75.2000 17.7398 6 2 5 90.0000 14.9499	,					ET)	108.2000	i i
5 93.2000 26.6214 6 1 5 75.2000 17.7378 6 2 5 90.0000 14.9479							87.4000	I i i
5 75.2000 17.7398 6 2 5 90.0000 14.9499						5	93.2000	
5 90.0000 14.94 ₉₉							75.2000	
An S							90.0000	
			۵	3		5	89.8000	19.3959

Fmax for testing homogeneity of between subjects variances: 26.25 Number of variances= 18 df per variance= 4.

Analysis of Variance Dependent variable: HT Source d f SS (H) MSS F Between Subjects 89 26346.9023 T (TRT) 2799.9668 559.9934 2.063 0.0793 R (REP) 2 28.4667 14.2333 0.052 0.9493 TR 10 3975.6665 397.5667 1.465 0.1694 Subj w Groups 72 19542.8027 271.4278

Indicates significant effect @ p20.05.

File: glutomht

Date: 06-08-1990

FILTER: None

Post-hoc tests for factor T (TRT)

Level	Mean	Level	Mean
1.	101.667	6	85.000
2	100.733		
3	96.200		
4	92.333	ř	
5	96.267		

Bon-Comparison Tukey-A* ferroni Dunnett 1 > 2 1 > 3 1 > 4 1 > 5 1 > 6 0.1000 0.0500 2 > 3 N.A. 2 > 4 N.A. 2 > 5 N.A. 2 > 6 N.A. 3 > 4 N.A. 3 < 5 N.A. 3 > 6 N.A. 4 < 5 N.A. 4 > 6 N.A. 5 > 6 N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

Post-hoc tests for factor R (REP)

Level	Mean
1	95.267
2	96.100
3	94.733

Bon-

Comparison Tukey-A* ferroni Dunnett

1 < 2 1 > 3

2 > 3

N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000).
A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

ANOVA: for cabbage - plant height data at days

Analysis of Variance

File: glucabht

Date: 06-08-1990

FILTER: None

T (TRT)

R (REP)

Subj w Groups

TR

N's, means and standard deviations based on dependent variable: HT

* Indicates statistics are co realment- Factors: TRILE			
Factors: TR HOE 039866	(/bai/A) N	Mean	S.D.
1 *- Control		73.1444	9.2660
	15	76.2000	6.0142
2 *-0.025	15	74.8000	9. BZ53
3 * -0.02	15	72.8667	7.7724
4 * -0 ·1	15	71.9333	11,7258
5 * -0.2	15	72.9333	5.4441
6 * -0.4	15	70.1333	8.2710
* 1	30	71.8000	8.7075
* 2	30	74.1333	8.4148
* 3	30	73.5000	7.7493
	S	78.2000	5.9330
1 2 1 3		73.2000	3.5637
2 1		77.2000	7.8230
2 2	E.T.	73.8000	6.4962
2 3	1227 1445	81.4000	8.4735
3 1	2007 No. 2	69.2000	7.9812
3 2	5	70.4000	8.1731
3 3	.	78.6000	5.2249
4 1	5	69.6000	7.4364
4 2		65.2000	14.0961
4 3	E)	76.0000	10.7935
5 1	21.1. ²	74.6000	8.93 <u>5</u> 1
5 2	::::: :	72.0000	6.4420
5 3		70.2000	3.8987
5 5 6 1		76.6000	4.4497
	===	71.2000	7.1903
6 2 6 3		65.4000	7.4681
	5	73.8000	9.0940
max for testing homogeneity of umber of variances= 18 df per		cts variances: 4.	15.65
nalysis of Variance De	Pendent varia	ble: HT	
ource df SS (1 etween Subjects 89 6081.12:		F	

68,1978

124.9178

61.1611

1.115

2.042

43.6778 0.714

0.3570

0.4967

0.0407

340.9889

1249.1777

4403.6001

87.3555

5

2

10

72

Analysis of Variance

File: glucabht

Date: 06-08-1990

FILTER: None

Post-hoc tests for factor T (TRT)

Level	Mean	Level	Mean
	76.200	6	70.133
****	74.800		
	72.867		
*	71.933 72.933		

		Bon-	
Comparison	Tukey-A*	ferroni	Dunnett
1 > 2			
1 > 3			
1 > 4			
1 > 5			
1 > 6		•	
$2 \rightarrow \overline{3}$			N.A.
2 > 4			N.A.
2 > 5	· ·		N.A.
2 > 6			
3 > 4			N.A.
3 < 5			N.A.
3 > 6			N.A.
4 < 5			N.A.
4 > 6			N.A.
5 > 4			N.A.
			N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1)

Post-hoc tests for factor R (REP)

Level	Mean
1	71.800
2	74.133
3	73.500

Bon-

Comparison Tukey-A* ferroni Dunnett

1 < 2 1 < 3

2 > 3

N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

ANOVA: for lettince - plant height data at day-21

Analysis of Variance

File: gluletht

Date: 06-08-1990

FILTER: None

N's, means and standard deviations based on dependent variable: HT

*	Indicates	95	tati <u>st</u> ics	are collapsed	over	this factor	
			Ireal		١		
	Factors:	Ī	RITOEC	539866 (16 ai/A	N	Mean	s.D.
		*	* ()	0	/90	43.2333	20.2463
		1.	* - conh	2	15	47.8000	7.1234
		<u></u>	*-0.03		15	57.0000	6.9292
		3	* - 0.02	5	15	55.8000	6.4829
		4	* -0.1		15	49.4000	9,2721
		5	* -0.5		15	39.0467	21.5952
	₩-	ద	* - 0.4	•	15	10.3333	17.2944
		*	1		30	44.8667	16.7759
		*	2		30	41.8000	23.3569
		*€	3		30	43,0333	20.6422
		1	1		5	48.4000	4,0373
		Fresh	2		5	41.4000	7.1624
		1			5	53.4000	4.3359
		2	1		5	58,8000	10.7564
		2	2		5	58,0000	3.5355
		2	3		5	54.2000	4.9699
		3	1		5	52.4000	6.1887
		3	<u>~</u>		EF.	58.2000	5.3572
		3	3		5	56.8000	7.5631
		4	1		<u></u>	44.4000	6.4265
		4	(T) dil 100			56.6000	10.5736
		4	3		5	47.2000	6.7602
		5	1		S	38.8000	23.8893
		5	/**) 		5	31.8000	29.3462
		5	3		5	46.6000	7.9561
		6	1		5	26.2000	21.0998
		6	22		S	4.8000	10.7331
		6	3		127	0,000	0.000
			· · · · · · · · · · · · · · · · · · ·				

Fmax for testing	homoger	neity of betwe	en subjects	variance	es: Not	def	ined
Analysis of Varia	nce	Depende	nt variable	: T		***************************************	
Source Between Subjects T (TRT) R (REP) TR Subj w Groups	df 89 5 2 10 72	SS (H) 36482.0980 22591.4355 142.8667 3276.2000 10471.5957	MSS 4518.2871 71.4333 327.6200 145.4388		0.0000 0.6167 0.0235		

* Indicates significant effect @ PZO.05.

Analysis of Variance

File: gluletht

Date: 06-08-1990

FILTER: None

Post-hoc tests for factor T (TRT)

Level	Mean	Level	Mean
j.	47.800	6	10.333
2	57.000		
2	55.800		
4	49.400		
S	39.067		

Bon-Comparison Tukey-A* ferroni Dunnett 1 < 2 1 < 3 1 < 4 1 > 5 0.0100 0.0000 0.0100 2 > 3 N.A. 2 > 4 N.A. 2 > 5 0.0100 0.0019 N.A. 2 > 6 0.0100 0.0000 N.A. 3 > 4 N.A. 3 > 5 0.0100 0.0047 N.A. 3 > 6 0.0100 0.0000 N.A. 4 > 5 N.A. 4 > 6 0.0100 0.0000 N.A. 5 > 6 0.0100 0.0000 N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

Post-hoc tests for factor R (REP)

Level	Mean
1.	44.867
2	41.800
Z.	43,033

Bon-

Comparison Tukey-A* ferroni Dunnett

1 > 2 1 > 3

2 < 3

N.A.

* The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

For Dunnett's test only the P-values .05 and .01 are possible and only for comparisons with the control mean (level 1).

ANOVA - for cucumber - plant dry weight for day -21

Analysis of Variance

File: glucucdw

Date: 06-08-1990

FILTER: None

M's, means and standard deviations based on dependent variable: DW

* Indicates statistics are collapsed over this factor

Treatment 1/h a: /A	N	Mean	S.D.
	18	210.4444	24.7914
1- Contil	3	243,3333	20.8407
2-0.02	3	215.6667	9.2916
3-0.02	3	221.3333	14.5717
4-0.1	恋	208.4447	10.6927
5 - 0.2	3	197.3355	21.9393
6-0.4		174.3333	6.8069
	Hote 039866 (16 ai/A) 1- Conha 2-0.025 3-0.05	# Hote 039866 (16 ai/A) 18 1- Conha 3 2-0.025 3 3-0.05 3 4-0.1 3 5-0.2 3	* Hote 039866 ($16ai/A$) 18 210.4444 1- Control 3 243.3333 2-0.05 3 215.6667 3-0.05 3 221.3333 4-0.1 3 208.6667 5-0.2 3 197.3333

Fmax for testing homogeneity of between subjects variances: Number of variances= 6 df per variance= 2.

10.39

Analysis of Variance Dependent variable: DW

Source Between Subjects	df 17	98 (H) 10448.4443	MS8	ļ Į	F
T (TRT) Subj w Groups	12	7698.4443 2750.0000	1539.6888 229.1667	6.719	0.0033

Post-hoc tests for factor T (TRT)

Level	Mean	Level	Mean
1	243.333	6	176.333
	215.667	•	
3	221.333		
4	209.667		
i:::	d had make make make make		

* Indicalés synificant effect & p < 0.00. Comparison Tukey-A* ferroni Dunnatt

., 1	/////	-/ cx (lukeyH*	terroni	Dunnet
	1	\geq	2			
	1.	\rightarrow	3			
	1.	>	4			
	1	>	S	0.0500	0.0444	0.0500
	.]	>	6	0.0100	0.0026	0.0100
	, 	<	3			N.A.
	<u></u>		4.			N.A.
	2	>	ij			Ν.Α.
		>	6	0.1000		N.A.
		>	4			N.A.
	.5	>	er Cj			N.A.
		\geq	Ć	0.0500	0.0513	N.A.
	4	>	5		*	N.A.
	4		6			N.A.
	5	>	ර			N.A.

^{*} The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000

ANOVA: for cabbage plant dry weight for day -21

Analysis of Variance

File: glucabdw

Date: 06-08-1990

FILTER: None

N's, means and standard deviations based on dependent variable: DW

* Indicates statistics are collapsed over this factor

Factors:	Treatment	16 ai/A) N	Mean	S.D.
	(Hre 039866	15 at /11) 18	102.6667	25.7476
	1 - Control	3	121.3333	17.5594
	2-0.022		119.0000	10.5357
	3-0.05		77.0000	53.6749
	4-0.1	***	110.6667	3.0551
	5 - 6.)	. 3	99.0000	3.0000
	6-0.4	Ž	89.0000	3.0000

Fmax for testing homogeneity of between subjects variances: Number of variances 6 df per variance

320.11

Analysis of Varia	nce	Depende	nt variable:	DW	
Source	df	SS (H)	M68		F
Between Subjects	17	11270.0020			
T (TRT)	5	4614.6675	922.9335	1.664	0.2160
Subj w Groups	12	6655.3345	554.6112		

Post-hoc tests for factor T (TRT)

Level	Mean	Level	Mean
1.	121.333	6	89.000
2	119,000		
S	77.000		
4.	110.667		
	99.000		

		Bon-	
Comparison	Tukey-A*	ferroni	Dunnett
1 > 2			
1 > 3			
1 > 4			
1 > 5			
1 > 6			
2 > 3			N.A.
2 > 4			N.A.
2 > 5			N.A.
2 > 6			N.A.
3 < 4			N.A.
3 < 5			N.A.
3 < 6			N.A.
4 > 5			N.A.
4 > 6			N.A.
5 > 6			N.A.

^{*} The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000,

ANOVA: for soybean-plant dry weight for day-21

Analysis of Variance File: glusoydw Date: 06-08-1990 FILTER: None N's, means and standard deviations based on dependent variable: DW * Indicates statistics are collapsed over this factor Treatment Factors: THOE 039866 (16 ai/A) Mean S.D. 18 456.4445 62.3918 i-Control 7 508.0000 53.5070 2-0.025 478.3333 50.5404 3-0.05 473.0000 26.0576 4-0.1 487.0000 27.5136 5 -0.2 3 437,3333 52.2047 *-6-0.4 355,0000 31.7490 Fmax for testing homogeneity of between subjects variances: 4.22 Number of variances= 6 df per variance= 2. Analysis of Variance Dependent variable: DW Source cl f MSS SS (H) Between Subjects 17 66176.4450 T (TRT) ::J 45003.1130 9000.6230 5.101 0.0097 Subj w Groups 21173.3320 1764.4443 Post-hoc tests for factor T (TRT) Level Mean Level Mean 1 508,000 355.000 2 478.333 473,000 487,000 5 437.333 significant effect @ p < 0.05 Comparison Tukey-A* ferroni Dunnett 1 > 2 1 > 3 1 > 4 1 > 5 1 > 6 0.0100 0.0121 0.0100 2 > 3 N.A. 2 < 4 N.A. 2 > 5 N.A. 2 > 6 0.0500 0.0557 N.A. 3 < 4 N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

3 > 5

3 > 6

4 > 5

4 > 6

5 > 6

0.0500

0.0500

0.0739

0.0353

<u>For Duppett's test only the R-values .05 and .01 are onstible</u>

^{*} The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

"ANOVA: for lettice - Plant dry weight for day -21

Analysis of Variance

File: gluletdw

Date: 06-08-1990

FILTER: None

N's, means and standard deviations based on dependent variable: DW

* Indicates statistics are collapsed over this factor

Factors: T HOE 039866 (16 ai/A)	N 18	Mean 74.9444	S.D. 32.1146
2 - 0.0% 3 - 0.05	3 3 3	88.0000 110.6667 104.6667	12.0000 16.1967 4.5092
4-0·1 米 5-0·2 米 6-0·4	S S	67.3333 54.3333 24.6667	11.0151 12.5831 7.0238

Fmax for testing homogeneity of between subjects variances: Number of variances= 6 df per variance= 2.

12.90

Analysis of Variance Dependent variable: DW Source df MSS F SS (H) Between Subjects 17 17532.9453 T (TRT) S 16021.6113 3204.3223 25.442 0.0000 Subj w Groups 1511.3340 125.9445

Post-hoc tests for factor T (TRT)

Level	Mean	Level	Mean	
1.	88,000	6	24.667	
2	110.667			
3	104.667			
4	67.333			
S	54.333		,	\/

* Inducate significant effect @ p20.05.

Comparison 1 < 2	Tukey-A*	ferroni	Dunnett	
1 < 3				
1 > 4				
1 > 5	0,0500	0.0483	0.0500	
1 > 6	0.0100	0.0003	0.0100	
2 > 3			N.A.	
2 > 4	0.0100	0.0077	N.A.	
2 > 5	0.0100	0.0009	N.A.	
2 > 6	0.0100	0.0000	N.A.	
3 > 4	0,0500	0.0236	N.A.	
3 > 5	0.0100	0.0023	N.A.	
3 > 6	0.0100	0.0000	N.A.	
4 > 5			N.A.	
4 > 6	0.0100	0.0087	N.A.	
5 > 6	0.1000		N.A.	

^{*} The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

PriorA: for ryegrass - plant dry weight @ day -21
Conc. Ronge: -0.0025 -> 0.04 Analysis of Variance File: gluryedw Date: 06-11-1990 FILTER: None N's, means and standard deviations based on dependent variable: DW * Indicates statistics are collapsed over this factor Treatment Factors: T * HOE 039866 (16 ai/A) S.D. 18 57,4444 16.4468 1-Control 0 3 16.5025 54,3333 2-0.0025 70.0000 31.7962 3-0.005 3 60,0000 7.9373 4-0.01 3 51.0000 2.0000 5-0.02 3 44.6667 12.6623 6 - 0.04 64.6667 11.9304 Fmax for testing homogeneity of between subjects variances: 252.75 Number of variances= 6 df per variance= Analysis of Variance Dependent variable: DW Source df SS (H) MSS Between Subjects 17 4598.4443 T (TRT) 1292,4443 258.4889 0.938 0.4944 Subj w Groups 12 3306.0000 275.5000 Post-hoc tests for factor T (TRT) Level Mean Level Mean 1 54.333 6 64.667 2 70,000 3 60.000 4], 51,000 5 44,667 Bon-Comparison Tukey-A* ferroni Dunnett 1 < 2 1 < 3 1 > 4 1 > 5 1 < 6 2 > 3N.A. 2 > 4N.A. 2 > 5 N.A. 2 > 6N.A. 3 > 4 N.A.

N.A.

N.A.

N.A.

N.A.

N.A.

3 > 5

3 < 6

4 > 5

4 < 6

5 < 6

^{*} The only possible P-values are .0i, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

ANOVA: for ryegrass - Plant dy weight @ day-21

Conc. Range: 0.025 -> 0.4

Elysis of Variance Date: 06-11-1990 FILTER: None N's, means and standard deviations based on dependent variable: DW * Indicates statistics are collapsed over this factor Treatment Factors: T HOE 039866 (16 ai/A) S.D. 52.2222 6.7349 1-Control (0) 63.3333 4.7258 2-0.035 4.0415 46.6667 3-0.05 52.3333 3.7859 4-0.1 51.3333 2.3094 5 -0.2 51.3333 6.0277 6 -0.4 48.3333 5.8595 Fmax for testing homogeneity of between subjects variances: 6.81 Number of variances= 6 df per variance= Analysis of Variance Dependent variable: DW Source df SS (H) MSS Between Subjects 771.1112 17 T (TRT) 513.1111 102.6222 4.773 0.0123 Subj w Groups 12 258.0001 21.5000 Post-hoc tests for factor T (TRT) Level Mean Level Mean 1 63.333 48.333 2 46.667 52.333 51.333 51.333 * Indicates significant effect @ PXO.05 Comparison Tukey-A* ferroni Dunnett 1 > 2 0.0100 0.0134 0.0100 1 > 3 0.0500 0.1000 0.0500 1 > 5 0.1000 0.0500 0.0500 0.0288 0.0100 2 < 3 N.A. 2 < 4N.A. 2 < 5 N.A. 2 < 6 N.A. N.A. 3 > 5 N.A. 3 > 6 N.A. 4 = 5 N.A. 4 > 6 N.A.

N.A.

5 > 6

^{*} The only possible P-values are .01, .05 or .10 (up to 0.1000). A blank means the P-value is greater than 0.1000.

... , Regressin Aralyse for EGo i ECo value:

D11:

READY

```
В
                                               E
                                                        --
                                                                  6
                                                                           H
    glu/lettuce/plant height/21-day
    TRT(conc) %effect log conc probit(%effect)
5
       0.025
6
                    19
                          -1.60
                                     4.12
7
        0.05
                   17
                          -1.30
                                     4.05
8
         0.1
                 2
                          -1.00
                                     2.95
\circ
         0.2
                   -19
                          -0.70
                                     4.12
10
         0,4
                   -79
                          -0.40
                                     5.81
11
12
             Regression Output:
    Constant
                                -89.1815
14
    Std Err of Y Est
                                19.57573
15
    R Squared
                                0.824108
16
    No. of Observations
17
    Degrees of Freedom
18
19
    X Coefficient(s)
                       -77.2292
20
   Std Err of Coef,
                       20.59926
08-Jun-90 08:39 AM
```

Regression ahalysis:
$$Y = a + bx$$

 $Y = -89.18 + (-77.23 \times)$

Regression analyses for ECso : ECs- values:-

A B C D E F G H

READY

glu/tomato/plant height/21-day TRT(conc) %effect log conc probit(%effect) 5 0.025 -- 1 -1.60 2.67 7 0.05 -6 -1.30 3.45 8 O_{π} i -10 -1.003.72 0.2 --6 -0.70 3.45 10 0.4 -17-0.40 4.05 11 12 Regression Output: 13 Constant 4.385588 14 Std Err of Y Est 0.304610 15 R Squared 0.732260 16 No. of Observations 3

17 Degrees of Freedom 18 19 X Coefficient(s) 0.918155 20 Std Err of Coef. 0.320537 08-Jun-90 08:44 AM

> Regression Equation = Y = a + bx Y = 4.39 + 0.92 X

Calculated ECso = 4.60 Bai/A Calculated ECso = 0.86 Bai/A

READY

```
E
                                                                    G
                                                                             --
____
    9lu/onion/plant height/21-day
    TRT(conc) %effect log conc probit(%effect)
4
       0.025
                     2
                           -1.60
7
        0.05
                    -6
                           -1,30
8
         0.1
                    ---2
                           -1.00
                                      2.95
9
          0.2
                    -- 1
                           -0.70
                                      2.67
10
         0.4
                    -17
                           -0.40
                                      4,05
11
12
              Regression Output:
13
    Constant
                                 3.710013
    Std Err of Y Est
1.4
                                 0.702447
15
    R Squared
                                 0.105127 *
16
    No. of Observations
1.7
    Degrees of Freedom
18
19
    X Coefficient(s)
                        0.506358
    Std Err of Coef.
20
                        1.044636
08-Jun-90 08:21 AM
```

Regression Analyses for EC50 & EC30-values:-

E glu/cabbage/plant height/21-day TRT(conc) %effect log conc probit(%effect) S 0.025 -- 1 -1.60 2.67 7 0.05 ···· 4 -1.30 3.25 8 O.1B -1.00 3.36 9 0.2 ---- 44. -0.70 3.25 10 0.4 -8 -0.40 3.59 11 12 Regression Output: 13 Constant 3.835718 Std Err of Y Est 0.201960 15 R Squared 0.734405 No. of Observations 16 1.7 Degrees of Freedom 19 X Coefficient(s) 0.612096 Std Err of Coef. 20 0.212520 08-Jun-90 07:58 AM

> Legressun Egnahon = Y = a + bX Y = 3.84 + 0.61X

Calculated EGo = 79.73 15 ai/A Calculated ECz = 6.36 16 ai/A READY

Di:

READ

```
Ε
7
    glu/soybean/dry weight/21-day
    TRT(conc) %effect log conc probit(%effect)
6
       0.025
                           -1.60
7
        0.05
                    --7
                           -1.30
                                      3.52
         0.j
                    ---4
                           -1.00
                                      3.25
         0.2
                   -14
                           -0.70
                                     3.92
10
         0.4
                   -30
                           -0.40
                                     4.48
11
              Regression Output:
13
    Constant
                                 4.542633
14
    Std Err of Y Est
                                 0.339290
15
    R Squared
                                 0.636973
    No. of Observations
17
    Degrees of Freedom
18
19
    X Coefficient(s)
                       0.819139
20
    Std Err of Coef.
                       0.357030
07-Jun-90 04:12 PM
```

Regression Squation: Y= a+bx Y= 4.54 + 0.82 X

Calculated ECso = 3.64 /b an/A Calculated ECs = 0.55 /b an/A

READY

H

```
E
                                                         F
    glu/lettuce/dry weight/21-day
    TRT(conc) %effect log conc probit(%effect)
       0.025
                    26
                           -1.60
7
        0.05
                    19
                          -1.30
         0.1
                   -23
                          -1.00
                                     4.26
         0.2
                   -38
                          -0.70
                                     4..69
10
         0.4
                   -72
                          -0.40
                                     5.58
11
12
             Regression Output:
13
    Constant
                                 6.375805
14
    Std Err of Y Est.
                                 0.187794
    R Squared
                                 0.961094
    No. of Observations
17
    Degrees of Freedom
18
    X Coefficient(s)
                       2.192472
20 Std Err of Coef.
                     0.441120
07-Jun-90 04:16 PM
```

Legresson Egnation: Y=a+6X Y= 6.38 + 2. 19×

Calculated EGo = 0.23 16 ai/A Calculated EC = 0.12 16 ai/A

« « Regression analyses for EGo & EGo values:-

D11:

READY

```
\mathsf{B}
2
    glu/cucumber/dry weight/21-day
    TRT(conc) %effect log conc probit(%effect)
       0.025
                   -11
                           -1.60
                                      3.77
7
        0.05
                    --- Ç
                           -1.30
                                      3.66
8
         0.1
                   -14
                           -1.00
                                      3.92
         0.2
                   -19
                           -0.70
                                     4.12
10
         0.4
                   -28
                           -0.40
                                      4.42
11
              Regression Output:
13
    Constant
                                 4.563465
14
    Std Err of Y Est
                                 0.133346
    R Squared
                                 0.853159
16
    No. of Observations
1.7
    Degrees of Freedom
18
19
    X Coefficient(s)
                       0.585827
20
    Std Err of Coef.
                       0:140318
07-Jun-90 04:19 PM
```

Regression analyses for EGO 5, ECs-value: _

1,	A	B	,,	Ď	;	F.	G	ļ
Ž S	glu/cabba	ge/dry we:	ght/21-	day				
4 5	TRT(conc) O	%effect]	og conc	probit(%e	ffect)	·	:	
6 7	0.025 0.05	-2 -36	-1.60 -1.30					
8 9	0.1 0.2	-9 -18	-1.00	3.59				
10 11	0.4		-0.40					
12	ri e	Regression	Output	;; tt				
7 4 5 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	Constant Std Err o- R Squared No. of Obs	f Y Est servations		4.675460 0.652359 0.285679				
17 18	Degrees o			3				
19 20 07-j	X Coeffici Std Err od Jun-90 04:	lent(s) O F Coef. O 22 PM	.751925 .686468					

Calculated ECoo = 2.75 1/2 ai/A Calculated EC = 0.34 16 an/A